作者gwendless (望月‧老蔣)
看板tutor
標題Re: [求助] 國中數學 學生無法理解敘述型題型
時間Mon Mar 14 11:44:49 2011
※ 引述《bigeyes0215 (Leave me alone)》之銘言:
: 年後接了朋友的數理家教,學生是八年級的女生,
: 程度非常差 (上學期第三次段考數學只有16分....)
: 幫她上了幾次課以後發現需要從頭打基礎,
: 因此現在計算題從小五四則運算開始補救,
: 她也很乖願意每天花個半小時寫題目。
: 但碰到敘述型的題目,或是兩個東西比較大小她就完全無法理解。
: 例如:A為B的四倍這句話,她無法很快看出A=4B
: 她媽媽說她的國文也不好,因此對題目的理解上也比較慢。
: 想請問這樣的問題應該要如何解決?
看來問題有兩部份:
1.「國語-數學翻譯」的問題(自稱)。
2.無法機械化式操作一元一次方程式的運算
關於問題1.
如同前面有其他板友推文的,將與等量公理中,與「等號」相關的繫詞整理出
然後「翻譯」給學生看。
Ex. A牌果醬的價錢是B牌果醬的兩倍,A牌每罐售價100元,那麼B牌售價為何?
看您的敘述,學生在純計算解法上OK,那麼想必對「翻譯成方程式」是沒轍的
如果對「以符號代表數」的概念OK,那麼直接切入翻譯
A牌果醬 is 「A」
B牌果醬 is 「B」
A是B的兩倍
老師示範把這句話切開看
A 是 B的兩倍 (或者可以圖像化、用更實際的例子:人口或面積等)
A = B的兩倍
A = 2B
如果學生一次列式無法到位,就一步步將這個理解流程拆開
看看是哪一部分的翻譯無法融會貫通。
: 因為若是不能夠解決敘述性題型的問題,我沒有辦法繼續下去教她應用題型....
: ps. 小五的應用題型基本題她可以理解,但難度稍高的就沒有辦法。
: 如:一箱蘋果有12袋,每袋有6包,每包有3顆,請問5箱有多少顆蘋果?
: 這種題目她還能夠列式,但碰到代數時她就完全沒辦法把6X=42 聯想回X=42/6
試著將「等價敘述」的概念潛移默化到學生身上
「我身上錢 是 你的兩倍」與「你身上錢 是 我的一半」是同樣的一種關係
從簡單的文字例子再利用「式子的翻譯法」,
進一步讓學生瞭解 6X=42 是為什麼能夠跟 X=42/6 是同理的。
再來就是使學生去習慣「將未知數以外的係數、常數統統清到同一邊去」的運算
如今,「等號」並不代表一個已經運算好了的結果。所以一定要讓學生知道
清乾淨了才叫做「解出了我們的未知數」
如此才「得到了題目所要求的答案」。
如果目的是要學會正確列式並以代數法解題,
那麼一定要將「純計算」的模式暫時放下,才能突破。
學生可能(只是可能而已)認為沒有純計算感覺不像在做題目。
感覺並不是在「算出他想算的數」
所以才難以突破這一關。
當然,這種隔空抓藥的解法只是一時想出,可能沒辦法很切入要害
如果要進一步找問題,歡迎繼續
只是很抱歉 時間有點緊迫XD....打到這邊才發現自己好像忘記跟人有午飯約了
希望能幫到您解決學生問題,待我回來再好好研究看看XD
: 請問有板友有遇過這種情況而能夠順利解決的嗎?
: 市面上是否有什麼針對這樣情況的教材可以使用呢?
: 先謝謝大家了....因為實在蠻困擾的,我跟她也都覺得很挫折....
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.243.31.231
※ 編輯: gwendless 來自: 111.243.31.231 (03/14 11:49)
→ tonglie:我都跟學生說 是=>等於 的 x號 03/14 11:52
→ tonglie:所以A是B的兩倍 請把國字上面寫出符號 A=Bx2 03/14 11:52
→ tonglie:所以我身上的錢是你的一半 就是我=你x(1/2) 03/14 11:53
→ tonglie:移項法則我教國小是跟她們說 他搬家到等號的左邊是因為被 03/14 11:54
→ tonglie:追殺 所以前面要變號orz 要講得面不改色她們就會記住XD 03/14 11:55
推 bigeyes0215:謝謝你, 有部分方法我還沒試過 再努力看看^^ 03/14 13:49
推 ryk: 03/15 01:36
推 figo0710:我進入解釋等量公理之前會先用畫天平來解釋 或者翹翹板 03/15 02:35
→ figo0710:以圖像的概念 然後慢慢代入列式的想法..... 03/15 02:36