推 fu3mo6:感謝版大!求出P,Q後的做法的確是這樣比較快,受教了~ 11/03 11:39
※ 引述《fu3mo6 (ㄚ龐)》之銘言:
: 1.年級:高三複習
: 2.科目:數學
: 3.章節:直線與圓
: 4.題目:
: 抱歉詳細數值不太記得,但題目的架構是這樣的
: 一個已知方程式的圓O,圓O外有一點A,從A做圓O的切線,切圓O於P,Q兩點
: 已知PQ直線的方程式,求A點的座標
: 5.想法:
: 詳解上是用了一個敘述PQ直線的公式解,但這個公式實在冷門
: 學生問有沒有不用此公式的解法
: 我的想法是利用AO直線過O點且與PQ垂直的性質
: 求出AO直線的方程式,然後就不知道怎麼辦了...
: 另外的方法是想把P,Q兩點求出來,用PQ直線和圓的交點算
如果能得到 O、P、Q 的座標(O 為圓 O 的圓心)
可以利用垂直 OP, 過 P 點, 找到過 P 點的切線
再利用垂直 OQ, 過 Q 點, 找到過 Q 點的切線
再聯立這兩條切線, 就可以得到 A 點了
至於找切線, 如果有 O、P、Q 的座標
不管是利用法向量, 或是利用點斜式, 應該都不是難事才對
至於要找 P、Q 的坐標, 就把圓 O 的方程式與 PQ 直線的方程式聯立吧
: 套用參數式可以計算,但是好複雜啊
: 算出PQ之後可以得到AP......可以算是可以算,但是好像繞了一大圈
: 有沒有比較適合的算法呢,謝謝!
--
家教經驗談 & 利用 TeX 編考卷與講義
http://dunst-kang.blogspot.com/
要轉錄文章的人請注意三件事
1. 請註明出處, 2. 請保留簽名檔, 3. 請發個 mail 讓我知道
我的動態...(要簡單的註冊才能互動)歡迎一起來囉
bbs 型的微型網誌(plurk) http://plurk.com/dunst/invite
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.204.102.208