看板 tutor 關於我們 聯絡資訊
※ 引述《Mordekaiser (魔鬥凱薩)》之銘言: : 1.年級:高二 : 2.科目:數學 : 3.章節:競賽題庫 : 4.題目: : x^2/(2^2-1^2)+y^2/(2^2-3^2)+z^2/(2^2-5^2)+w^2/(2^2-7^2)=1 : x^2/(4^2-1^2)+y^2/(4^2-3^2)+z^2/(4^2-5^2)+w^2/(4^2-7^2)=1 : x^2/(6^2-1^2)+y^2/(6^2-3^2)+z^2/(6^2-5^2)+w^2/(6^2-7^2)=1 : x^2/(8^2-1^2)+y^2/(8^2-3^2)+z^2/(8^2-5^2)+w^2/(8^2-7^2)=1 : 求x^2 + y^2 + z^2 + w^2之值 : 5.想法: : 一開始第一個想法是全部通分解四元一次,可是顯然計算量有點大.. : 再者全部相加 : x^2 (1/(2^2-1^2) + 1/(4^2-1^2) + 1/(6^2-1^2) + 1/(8^2-1^2)) + : y^2 ... : = 4好像也沒什麼效果可以用,消不掉 : 想請問有什麼特殊解法嗎@@ 1984美國數學邀請賽的題目, 今年彰中科學班剛拿來考 設x^2/(t-1^2) + y^2/(t-3^2)+z^2/(t-5^2)+w^2/(t-7^2)=1 觀察可式子得t有四解2^2,4^2,6^2,8^2 (即4,16,36,64) 同乘以(t-1)(t-9)(t-25)(t-49)得 x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25) =(t-1)(t-9)(t-25)(t-49) 移項整理得t^4-(x^2+y^2+z^2+w^2+84)t^3+ ... =(t-4)(t-16)(t-36)(t-64) 故四根和=x^2+y^2+z^2+w^2+84 = 4+16+36+64 = 120 得x^2+y^2+z^2+w^2=36 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.126.254.230
nomorethings:推! 04/20 00:47
lasting323:有看有推 04/20 01:15
kego:推!! 這個跟嚴鎮軍的初中數學競賽教程題目有異曲同工之妙 04/20 01:37
shenasu:第一印象也是化成根的樣子 04/20 04:00