看板 tutor 關於我們 聯絡資訊
※ 引述《sunfin (遠方)》之銘言: : 已知(x+y+z)(x+y)(y+z)(z+x)不等於零 : 且[x^2/(y+z)]+[y^2/(z+x)]+[z^2/(x+y)]=0 : 求: : 1. [x/(y+z)] + [y/(z+x)] + [z/(x+y)] = ? : 2. [x^2/(yz)] + [y^2/(zx)] + [z^2/(xy)] = ? : 感激不盡! 1. 設答案為w, w(x+y+z) = ......(請自行整理) = [x^2/(y+z)]+[y^2/(z+x)]+[z^2/(x+y)]+x+y+z = x+y+z (x+y+z)不為0,w=1 2. 已知[x/(y+z)]+[y/(z+x)]+[z/(x+y)] = 1 展開之,整理後得x^3+y^3+z^3+xyz=0 又xyz不為0,同除xyz得[x^2/(yz)]+[y^2/(zx)]+[z^2/(xy)]+1=0 所求為-1 其實我會想po是想請問第二小題是否有更elegant的解法,總覺得這樣解稍嫌暴力... -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.228.244.40 ※ 文章網址: http://www.ptt.cc/bbs/tutor/M.1402332194.A.D15.html