精華區beta CSIECourse 關於我們 聯絡資訊
1. (a) Let L = { x10 | x 屬於 {0,1}* } find a finite automata M = (Q, Sigma, Delta, q0, F) such that L = L(M). (b) Find the minimal finite automata of M. 2. A = { a^(2^n) | n >= 0 }, prove or disprove that A is a regular language. 3. Give context-free grammars over Sigma = {0,1} to generate: (a) L1 = { w | w contains 1s more than 0s }. n n (b) L2 = the complement of the language L = { a b | n >= 0 } 4. Prove that every regular language is a context-free language. 5. L = { x 屬於 {a,b}* | number of a's in x > number of b's in x }, design a pushdown automata to recognize L. -- ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ Jerry 的文章 __ ▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆ _ ▁▁▁▁ ▁▁▁▁ 這篇文章為 Jerry 所發表 確定 取消 ▇▇▇▇ ▇▇▇▇ -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: ntucsa.csie.ntu.edu.tw