精華區beta CSMATH 關於我們 聯絡資訊
First we can verify 2003 is a prime. Then, by Wilson's theorem, we have (2002)!≡-1(mod 2003). Also, using Wilson's theorem we have the following congruences. (1^2)(3^2)***(2001^2)≡(-1)^[(2003+1)/2]≡1(mod 2003) (2^2)(4^2)***(2002^2)≡(-1)^[(2003+1)/2]≡1(mod 2003) Let 1*3***2001=a and let 2*4***2002=b. Then I^2≡a^2+b^2+2ab≡1+1+2*(-1)≡0(mod 2003). Since 2003 is a prime, we obtain I≡0(mod 2003). Therefore 2003 divides I. -- 如果你覺得會讓你快樂的事 那就繼續做吧 不要把會讓自己快樂的權利都給剝奪掉了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.222.127 ※ 編輯: nwn 來自: 140.114.222.127 (10/02 02:07)