作者awesomeagar (累翻翻)
看板NTU-Exam
標題[試題] 95上 陳旭昇 統計學與實習一 期末考
時間Sat Jan 20 00:43:03 2007
課程名稱︰統計學與實習一
課程性質︰經濟系必修
課程教師︰陳旭昇
開課學院:社科學院
開課系所︰經濟系
考試日期(年月日)︰2007/01/16
考試時限(分鐘):120分鐘
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
Statistics 1: Final Exam (January 16, 2007)
Note: Answers without explanation or calculation earn no point
[試題開始]
Problem 1 (2, 2, 1, 1 pts) Let Rk and Rm denote the percentage returns on
asset K and market portfolio, repectively. Let the joint pmf. of Rk and Rm
be defined by
f(rk,rm) = (rk + rm) / 21 ,
with supports supp(Rk) = {1,2} and supp(Rm) = {1,2,3}
1. Find the marginal pmf of Rk and Rm: f(rk), f(rm).
2. Find the MGF of Rk and Rm: Mk(t), Mm(t).
3. Find out the β of asset K.
4. Find out the risk-free rate rf.
Problem 2 (2, 2, 2 pts) Let X~N(0,1) and Y = e^X
1. What is the support of Y?
2. Find out the pdf of Y.
3. Find out E(Y) and Var(Y).
Problem 3 (2, 2, 2 pts) Let Xn~Binomial(n,μ) and Yn = Xn/n
p
1. Suppose that Yn─→q. Find out the value of q.
2. Find out the asymptotic distribution of Yn.
3. Use Delta's Method to find out the asymptotic distribution of (Yn)^2
Problem 4 (2, 2, 2 pts) Let X,Y,Z be mutually independent random variables
with Poisson distribution having means 4, 3, 2, repectively.
1. Find the moment-generating funtion of the sum W = X+Y+Z.
2. How is W distributed?
3. Suppose the distribution function of W is denoted by F(w). Now assume that
{Wi}100 a random sample from F(w). Use CLT to approximate the probability
i=1
100
__
P( 900 < > (Wi) < 960 ) p.s.中間那個醜醜的是summation(sigma)
 ̄  ̄  ̄
i=1
Problem 5 (2, 2, 2 pts) Let {Xi} n be a random sample from N(5,15). Define
i=1
the sample mean and sample variance as
__ __
Xn = (>i Xi) / n ,
 ̄
__ _ __ _
S^2 = >i(Xi-Xn)^2 / (n-1) = >i(Xi)^2 - n*(Xn)^2 / (n-1)
 ̄  ̄
We also define
~ __ _ __ _
S^2 = >i(Xi-Xn)^2 / n = >i(Xi)^2 - n*(Xn)^2 / n
 ̄  ̄
~
1. Find out E(S^2) and E(S^2).
~
2. Find out Var(S^2) and E(S^2).
~ p
3. Suppose that S^2 ─→ k. Find out the value of k.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.215.18
推 yishanfox:這位豆芽很愛錢喔DXD 01/20 02:03
推 phage17:樓上這位仁兄,留考古主要是為了提供後進參考之用 01/20 02:21
→ alianlin:不過老師網頁上本來就會放考古題讓大家下載 還是pdf檔 XD 01/20 11:39