作者GhostWall (鬼打牆)
看板FJU_CLASS
標題[考題] 日/物理系/呂秀鏞/應用數學/期末考
時間Wed Jan 24 16:54:19 2007
1. Find the indical roots of the following differential equation
x^2 y" + 6xy' + (6 - x^2)y = 0 (10 points)
2. Write down the Legendre's differential equation and Bessel's differential
equation of order n. (10 points)
∞ (-1)^n x
3. From Jυ(x) = Σ ---------------- (---)^2n+υ , show that
n=0 n!Γ(n+υ+1) 2
1 J 2
(a) (x^υ Jυ)' = x^υ Jυ-1 (b) Γ(---) = √π (c) 1/2 = √(---) sinx
2 πx
(20 points)
1
4. Show that ∫ Pn(x)Pm(x) dx = 0 for n ≠ m (20 points)
-1
5. Find the inverse Laplace transform of the following functions :
s e^-2s s
(1) ㏑(-----) (2) -------- (3) ----------- by convolution thm. (20 points)
1+s s - 4 (s^2 + 1)^2
6. Find the Laplace transform of the following functions (20 points)
(1) e^-t sin2t (2) sin^2 t (3) t^2 u(t-1)
7. Use the Laplace transform to solve the following problem
y" + 2y' + 2y = δ(t-1) ; y(0) = y'(0) = 0 (20 points)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.139.74.11
※ 編輯: GhostWall 來自: 220.139.74.11 (01/24 16:57)
※ 編輯: GhostWall 來自: 220.139.74.11 (01/24 17:00)
推 resistor:看成呂秀蓮XDD 01/24 17:16
推 RainSakura:你也太強了吧= =~我還在想要怎麼打= = 01/24 19:48
推 psaphy:看錯+1 01/24 21:22
推 jiazha:超強@0@ 01/24 23:54
推 fm1210:真的很厲害@@ 居然打成這麼強大的樣子 01/25 00:05
推 atanglin:這老師是好人 01/25 20:02