精華區beta GambleGhost 關於我們 聯絡資訊
\documentclass{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=4.00.0.2312} %TCIDATA{Created=Wednesday, October 24, 2007 23:48:13} %TCIDATA{LastRevised=Thursday, October 25, 2007 01:48:07} %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Blank - Standard LaTeX Article">} %TCIDATA{CSTFile=40 LaTeX article.cst} %TCIDATA{PageSetup=36,36,36,36,0} %TCIDATA{Counters=arabic,1} %TCIDATA{AllPages= %H=36 %F=36 %} \newtheorem{theorem}{Theorem} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \section{Serre, Linear Representations of Finite Groups.} \subsection{Chapter 7} \QTP{Body Math} 7.3. \ (a) Note that $N_{G}(H)=\{tHt^{-1}=H\mid t\in H\}=H$ by $H\cap tHt^{-1}=\{1\}$ for every $t\notin H$. Hence there are $[G:H]$ distinct conjugates of $H$, and $card(\cup _{t\in H}tHt^{-1})=[G:H](card(H)-1)+1=% \frac{g}{n}(n-1)+1$. Therefore% \[ card(N)=card(G-\cup _{t\in H}tHt^{-1})=card(G)-card(\cup _{t\in H}tHt^{-1})=g-(\frac{g}{n}(n-1)+1)=\frac{g}{h}-1. \] \QTP{Body Math} (b) Let% \[ \widetilde{f}=Ind_{H}^{G}f-f(1)\psi \] \QTP{Body Math} with $\psi $ is the character $Ind_{H}^{G}1-1$ of $G$. Since every class function on $G$ is the combination of all irreducible characters on $G$, the uniqueness is trivial, and (c) holds particularly. Pick $s\in H$. $% \widetilde{f}(s)=\frac{1}{h}\sum_{t\in G,t^{-1}st\in H}f(t^{-1}st)-f(1)(% \frac{1}{h}\sum_{t\in G,t^{-1}st\in H}1(t^{-1}st)-1)=\frac{1}{h}\sum_{t\in H}f(s)-f(1)(\frac{1}{h}\sum_{t\in H}1-1)=f(s)$. Hence $\widetilde{f}$ extends $f$. Pick $s\in N$. $Ind_{H}^{G}f(s)=\frac{1}{h}\sum_{t\in G,t^{-1}st\in H}f(t^{-1}st)=0$, and $Ind_{H}^{G}1(s)=\frac{1}{h}\sum_{t\in G,t^{-1}st\in H}1(t^{-1}st)=0$ also. Hence $\widetilde{f}(s)=f(1)$. Hence $% \widetilde{f}=f(1)$ on $N$. \QTP{Body Math} (c) By (b). \QTP{Body Math} (d) By Frobenius reciprocity, $\left\langle f_{1},f_{2}\right\rangle _{H}=\left\langle f_{1},\limfunc{Res}\widetilde{f_{2}}\right\rangle _{H}=\left\langle Indf_{1},\widetilde{f_{2}}\right\rangle _{G}$. Hence we need to prove $\left\langle \psi ,\widetilde{f_{2}}\right\rangle _{G}=0$, or $\left\langle \psi ,\widetilde{f_{2}}\right\rangle _{G}=\left\langle Ind_{H}^{G}1-1,\widetilde{f_{2}}\right\rangle _{G}=0$. \[ \left\langle Ind_{H}^{G}1,\widetilde{f_{2}}\right\rangle _{G}=\frac{1}{g}% \sum_{t\in G}Ind_{H}^{G}1(s^{-1})\widetilde{f_{2}}(s) \] \end{document}