精華區beta Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《slasher (you got me)》之銘言: : 12. : A = [aij] 是一個 正定 對稱 的 nxn 矩陣 : 下列何者正確? : (A) aii > 0, for all i : (B) A 可逆 : (C) aii + ajj - 2*aij > 0, for all i != j : (D) aii*ajj - (aij)^2 > 0, for all i != j : (E) 以上皆對 : (A), (B)是對的 : (C), (D)怎麼導? 我不知道答案是什麼 : 有這份的參考答案嗎?^^" (C) ∵ A is a positive definite matrix ∴ A = transpose(B)‧B (Notice that B is invertible.) ∴ aii = sum of bki^2 (for k = 1 to n) ajj = sum of bkj^2 aij = sum of bki*bkj And for each k, bki^2 - 2*bki*bkj + bkj^2 = (bki - bkj)^2 >= 0. (Notice that any i, j be choosen will not affect this result.) So, sum up all from k = 1 to n, the result won't be negative. But if aii + ajj - 2*aij = 0, this means for all k = 1 to n, (bki - bkj) = 0. So the ith column of B is equal to the jth column of B -> B is not invertible. -> Contradiction. => aii + ajj - 2*aij > 0, for all i!= j (D) As we mentioned above, aii = sum of bki^2 (for k = 1 to n) ajj = sum of bkj^2 aij = sum of bki*bkj ∴ aii*ajj = (b1i^2 + b2i^2 + ... + bki^2)*(b1j^2 + b2j^2 + ... + bkj^2) aij^2 = (b1i*b1j + b2i*b2j + ... + bki*bkj)^2 And the process of comparison of these two numbers is belong to the area of discrete math. So you can try it. :) (Hint: Try aii*ajj - aij^2, you will get the same inequality in question (C).) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.56.159.17 ※ 編輯: justmaker 來自: 61.56.159.17 (02/02 13:47)