Let A be a m╳n matrix and A^T be the transpose of A.
If N(A^T) and C(A) denote the nullspace of A^T and the
column space of A, respectively. Show that
N(A^T) = C(A)^⊥,
where C(A)^⊥ = { x in R^m : x˙y = 0 for all y in C(A) }.
--
我好窮啊,我好缺批幣啊
,你有摳摳ㄋㄟ
可憐可憐我吧,施捨一點吧
請到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.218.142