精華區beta Math 關於我們 聯絡資訊
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : Let P_2 = { ax^2 + bx + c : a,b,c in R } and let T: P_2 -> R ︿︿修正一下. : be the linear transformation defined by : 1 : T(P(x)) = ∫ P(x) dx : 0 : (a) Find a basis for ker(T). : (b) Find a basis for range(T). 這一題應該不難吧, 我們先看: 取 P(x) = ax^2 + bx + c in P_2, 則 T(P(x)) = T(ax^2 + bx + c) 1 = ∫ (ax^2 + bx + c) dx 0 = a/3 + b/2 + c. 所以當 P(x) in ker(T) <=> T(P(x)) = 0. <=> a/3 + b/2 + c = 0. (Let a = t, b = s, then c = -t/3 - s/2) <=> P(x) = tx^2 + sx + (-t/3 - s/2) = t(x^2 - 1/3) + s(x - 1/2) 所以 ker(T) 的基底可以是 { x^2 - 1/3, x - 1/2 }. range(T) 的基底則是 {1}. -- 我好窮啊,我好缺批幣啊 ,你有摳摳ㄋㄟ 可憐可憐我吧,施捨一點吧 請到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142