精華區beta Math 關於我們 聯絡資訊
Let A be an m╳n real matrix, and let A' be the transpose of A. (a) Show that if m = 2 and n = 4, then the determinant of A'A = 0. (b) Write down certain conditions on A, m and n which will ensure that the determinant of A'A is nonzero. (c) Show that if v_1, v_2, ..., v_n are linearly independent vectors of R^n, then the determinant of [ (v_1,v_1) (v_1,v_2) ... (v_1,v_n) ] [ (v_2,v_1) (v_2,v_2) ... (v_2,v_n) ] [ ......... ......... ... ......... ] [ (v_n,v_1) (v_n,v_2) ... (v_n,v_n) ] is positive, where ( , ) is the standard inner product of R^n. (d) Is there any relationship between the rank of A'A and the rank of A ? -- 我好窮啊,我好缺批幣啊 ,你有摳摳ㄋㄟ 可憐可憐我吧,施捨一點吧 請到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142