精華區beta Math 關於我們 聯絡資訊
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : Prove that for any a, b in R, : | sin(a+b) - ( sin(a)+b cos(a) ) | ≦ b^2/2. 令 f(x) = sin(a+x) - sin(a) - xcos(a) - (x^2)/2 f'(x) = cos(a+x) - cos(a) - x f"(x) = -sin(a+x) - 1 f"(x)≦0 for all real x => f'(x) is decreasing on R f'(0) = 0 => f'(x)≧0 when x<0 and f'(x)≦0 when x>0 Hence f(x) ≦ f(0) = 0 i.e. sin(a+x) - sin(a) - xcos(a) ≦ (x^2)/2 類似地, 令 g(x) = -sin(a+x) + sin(a) + xcos(a) - (x^2)/2 相同的作法可得 -sin(a+x) + sin(a) + xcos(a) ≦ (x^2)/2 故 |sin(a+x) - sin(a) - bcos(x)| ≦ x^2/2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.219.178.222