精華區beta Math 關於我們 聯絡資訊
※ 引述《Sfly (entangle)》之銘言: : ※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : : Show that a group of order 30 cannot be a simple group. : 可以推廣到order為 2qr的群 where 2<q<r are primes. : The key point is that, by sylow theorem, : the number of k-sylow is greater than k since the group is not simple. : With this, we can estime the size of the group: : 2qr >= 1+3*1+(q+1)(q-1)+(r-1)(r+1) : = 2+q^2+r^2 : which is impossible. 還有一個有趣的事 If G is a group of order 2k, where k is odd, then G has a subgroup H of order k. Therefore H is a proper normal subgroup of G. G is not simple. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.85.44.161