作者TaiwanBank (PTT生日快樂^^)
看板Math
標題[代數] 代數(9)
時間Tue Sep 27 11:27:55 2005
Let R be a ring with 1 and I,J be two-sided ideals of R.
(a) Give an example to show that IJ = I∩J need not be true.
(b) Suppose I+J = R. Show that IJ = I∩J.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.218.142
推 Sfly:for a, take R=Z,(2)(2)=(4)!=(2)=(2)∩(2). 09/27 13:24
→ Sfly:for b, choose i in I nad j in J such that i+j=1, then 09/27 13:26
→ Sfly:any x in I∩J, we have x=ix+xj, which is in IJ. 09/27 13:30
→ Sfly:and the contrary is trivial. 09/27 13:31