精華區beta Math 關於我們 聯絡資訊
※ 引述《TaiwanBank (PTT生日快樂^^)》之銘言: : If A and B are subgroups of G with [G:A] < ∞, [G:B] < ∞, and : [G:A] and [G:B] are relatively prime, then G = AB. pf: Let [G:A] = n [G:B] = m. Let S := {aB | a \in A} and T := {gB | g \in G}. Then t := |S| ≦ |T| = m. Let S = {a_i B | i=1,2...,k } (i.e. a_i B = a_j B iff i=j) Claim: A= ∪a_i(A∩B) (i.e. [A:A∩B]= k) 1.∪a_i(A∩B) is contained in A. (Trivial) 2.for a \in A then aB= a_i B for some i Hence a = a_i b for some b \in B Since b = (a_i)^(-1) a \in A, b \in A∩B. Therefore a \in ∪a_i B. Now [G:A∩B]=[G:A][A:A∩B]=nt is finite Similar [G:A∩B]=[G:B][B:A∩B]= mk is finite for some k. Hence mk=nt. Since (m,n)=1, m|t. Hence m≦t. But t ≦ m , therefore t=m. i.e. S=T. G=AB. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.112.46.6