精華區beta Math 關於我們 聯絡資訊
※ 引述《wwli (想延畢的q我)》之銘言: : ※ 引述《plover (+oo)》之銘言: : : n! ~ ( 2 Pi / (n+1) )^(1/2) e^(-(n+1)) (n+1)^(n+1) : 感謝plover大師, 這就是Stirling公式的完整版, : 不過原發問者的意思, 好像正是要問說這個公式何 : 以得到. : 最簡單的一種看法大概是這樣的: : log(n!) = log(1) + log(2) + ... + log(n) : 以積分逼近這個和(想法類似於積分審斂法), 可得 : 當n大時, log(n!) "差不多" 相近於 : n : ∫ log(x)dx = nlog(n) - n + 1 : 1 : 嚴格的估計可以用上下和來夾積分值獲得. 當然, : 若要得到像plover大師那般精確的估計, 就需要 : 更深的技巧. 再貼一篇: 作者 [email protected] (.................), 看板 math 標題 Re: 請問這公式... 為什麼丫? 時間 清華資訊(楓橋驛站) (Fri May 3 00:40:09 2002) ─────────────────────────────────────── ※ 引述《[email protected] (Embracing the Wind)》之銘言: > ln(N!) = N*ln(N) - N 這等號不可能是對的, 應該是這樣的: ln(x!) ~ x(lnx) - x as x->+∞. 證明如下: By Stirling Formula: Γ(x+1):= x!~ (x^x)( e^(-x) )( √(2πx) ) as x->+∞. So, x! ln --------------------------- ->0 as x->+∞. (x^x)( e^(-x) )( √(2πx) ) That is, ln x! - (xln x - x) - ln √(2πx) -> 0 as x ->+∞. So, given ε>0, there exists a positive M such that as x≧M, we have: |lnx! - (xln x - x)| < |ln √(2πx)| + ε. (*) Note that we want to show that ln(x!)/(xlnx - x) ->1 as x ->+∞. Consider (*), and thus we have: ( for x ≧M ) |lnx! - (xln x - x)| |ln √(2πx)| + ε. -------------------- < ------------------- |(xlnx - x)| |(xlnx - x)| Hence, as x->+∞, the above inequality (the right term -> 0). So by Sandwich theorem, we know that |lnx! - (xln x - x)| -------------------- -> 0 as x ->+∞. |(xlnx - x)| Therefore, |lnx!|/|(xlnx - x)| ->1 as x->+∞. So, lnx!/(xlnx - x) -> 1 as x->+∞. That is, ln x! ~ (xlnx - x). Note that the symbol "~" is called Landau Notation. It means that if f(x)/g(x) ->1 as x->+∞, we denote it by f~g as x->+∞. -- ※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw) ◆ From: 140.112.247.33