精華區beta Math 關於我們 聯絡資訊
※ 引述《weirenn (下雨天的味道)》之銘言: : 證明對所有的正整數n都成立 : (2/3)n^15 -(3/7)n^7 +(1/5)n^5 -(46/105)n : 為整數 For another look, the question is equivalent to say f(n) = 0 (mod 105) for nεN where f(n)= 2*5*7 n^15 - 3*3*5 n^7 + 3*7 n^5 - 46n (mod 3) f(n)= 2*5*7 n^15 - 46n = n - n = 0 (mod 5) f(n)= 3*7 n^5 - 46n = n - n = 0 (mod 7) f(n)= -3*3*5 n^7 - 46n = 4n-4n = 0 QED. Theorem. (Fermat) p is a prime, p is not a factor of a. => a^(p-1)=1 (mod p) that is, for all integer x, x^p=x (mod p). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.225.29.141