精華區beta Math 關於我們 聯絡資訊
※ 引述《jknm0510a (Kang)》之銘言: : 想請問一下各位 : 1. Prove that 1^2-2^2+3^2-.....+(-1)^n-1*n^2= (-1)^n-1*n(n+1)/2 by induction : for n>=1. n=1顯然成立 假設n=k,1^2-2^2+3^2-.....+(-1)^k-1*k^2= (-1)^k-1*k(k+1)/2成立 n=k+1, 1^2-2^2+3^2-.....+(-1)^k-1*k^2 + (-1)^k*(k+1)^2 = (-1)^k-1*k(k+1)/2 + (-1)^k*(k+1)^2 = (-1)^k-1[k(k+1)/2-(k+1)^2] = (-1)^k-1(k+1)[k/2-(k+1)] = (-1)^k-1(k+1)[-(k+2)/2] = (-1)^k*(k+1)(k+2)/2 得證 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.224.188.85
jknm0510a :感謝,原來是用數學歸納法... 01/16 19:20