推 hchuang :exercise ...XD 09/16 16:51
※ 引述《MeNeNe (咪逆逆)》之銘言:
: 1.設a,b,c,d是任意給定的四個整數,求證
: (b-a)(c-a)(d-a)(c-b)(d-b)(d-c)被12整除。
let b-a=i, c-a=j, d-a=k
then c-b=j-i, d-b=k-i, d-c=k-j
A=ijk(j-i)(k-i)(k-j)
if i,j,k are all odd
then (j-i), (k-i), (k-j) are all even
then A=0 (mod4)
if two of i,j,k are odd,
then one of i,j,k is even
and one of (j-i), (k-i), (k-j) is even
then A=0 (mod4)
A=0 (mod3) exercise
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.97.47