作者Amulart (要衝刺!!!)
看板Math
標題[離散] 一些樹的問題
時間Wed Jun 9 20:43:13 2010
1. Prove that in every tree, any two paths with maximum length have a node in
common. This is not true if we consider two maximal paths.
2. Find a spanning tree for which (a) the product of the edge-costs is minimal
(b) the maximum of the edge-costs is minimal (Some edge-costs are positive)
3.If every node of a planar map has even degree, then the faces can be
2-colored.
4.Consider any table with 2 rows and n-1 columns; the first row holds 1,2,...,
n-1; the second row holds arbitrary numbers between 1 and n. Construct a
graph on nodes labeled 1,...,n by connecting the two nodes in each column of
our table.
(a) Prove that if the graph is connected, then it is a tree.
(b) Prove that every connected component of this graph contains at most one
cycle.
這些題目想不到解法,希望板上大大能給小弟一些提示,謝謝
--
※ 編輯: Amulart 來自: 140.117.120.229 (06/09 20:49)
推 hcsoso :1. 反證法, 考慮兩條 paths 的四個頂點的關係 06/09 22:30
→ hcsoso :2. 圖是什麼? 06/09 22:30
→ hcsoso :3. bipartite graph iff no odd cycles 06/09 22:30
→ hcsoso :4. 這個圖的 maximum degree 是? 06/09 22:32
→ hcsoso :阿 sorry 4. 不對, 我看錯題目了... 06/09 22:32
→ hcsoso :4. (a) 邊的總數 06/09 22:33
→ hcsoso :4. (b) 考慮用有向邊, 觀察一個關於 degree 的性質 06/09 22:36