※ 引述《mqazz1 (無法顯示)》之銘言:
: let R be a relation on a set A
: show that if R is reflexive and transitive,
: then R^n = R for all positive integer n
Also indution on n.
k
Assume that the R = R for k ≦ n.
n
Let (a,b) be in R. By assumption of induction, (a,b) is in R .
n+1
Since R is reflexive, (b,b) is in R, so (a,b) is in R .
n+1
Let (c,d) be in R . So there exist e is in A s.t.
n
(a,e) is in R , and (e,d) is in R. By assumption of induction,
(a,e) is in R . Since R is transitive, (a,d) is in R.
--
煩請幫忙 第18046篇 #1CiVF51L (Math) [ptt.cc]
[分析] PDE 兩題 這一題 謝謝!!
--
翩若驚鴻 婉若游龍 榮曜秋菊 華茂春松
髣彿兮若輕雲之蔽月 飄颻兮若流風之迴雪
遠而望之 皎若太陽升朝霞 迫而察之 灼若芙蕖出淥波
襛纖得衷 脩短合度 肩若削成 腰如約素 延頸秀項
皓質呈露 芳澤無加 鉛華弗御 雲髻峨峨 脩眉聯娟
丹脣外朗 皓齒內鮮 明眸善睞 靨輔承權 瑰姿豔逸
儀靜體閑 柔情綽態 媚於語言 奇服曠世 骨像應圖
--
※ 發信站: 批踢踢實業坊(ptt.cc)
※ 編輯: sato186 來自: 111.242.8.225 (10/12 23:04)