精華區beta Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : let R be a relation on a set A : show that if R is reflexive and transitive, : then R^n = R for all positive integer n   Also indution on n. k   Assume that the R = R for k ≦ n. n Let (a,b) be in R. By assumption of induction, (a,b) is in R . n+1 Since R is reflexive, (b,b) is in R, so (a,b) is in R . n+1 Let (c,d) be in R . So there exist e is in A s.t. n (a,e) is in R , and (e,d) is in R. By assumption of induction, (a,e) is in R . Since R is transitive, (a,d) is in R. -- 煩請幫忙 第18046篇 #1CiVF51L (Math) [ptt.cc] [分析] PDE 兩題 這一題 謝謝!! --           翩若驚鴻 婉若游龍 榮曜秋菊 華茂春松           髣彿兮若輕雲之蔽月 飄颻兮若流風之迴雪        遠而望之 皎若太陽升朝霞 迫而察之 灼若芙蕖出淥波        襛纖得衷 脩短合度 肩若削成 腰如約素 延頸秀項        皓質呈露 芳澤無加 鉛華弗御 雲髻峨峨 脩眉聯娟        丹脣外朗 皓齒內鮮 明眸善睞 靨輔承權 瑰姿豔逸        儀靜體閑 柔情綽態 媚於語言 奇服曠世 骨像應圖 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 編輯: sato186 來自: 111.242.8.225 (10/12 23:04)