※ 引述《sato186 (銀色轟炸機)》之銘言:
: ※ 引述《mqazz1 (無法顯示)》之銘言:
: : find a formula for a(n) satisfying the relation
: : a(n) = -2a(n-2) - a(n-4)
: : with a(0)=0, a(1)=1, a(2)=2, a(3)=3
: : 請問應該怎麼推呢?
: 2
: X = -2X -1 => X = -1 (double root). Thus
x^4 = -2x^2 - 1
請問如果這樣假設
會不會不方便解?
: n/2 n/2
: a(n) = s(-1) + t(-1) n for even n,
: (n-1)/2 (n-1)/2
: a(n) = u(-1) + v(-1) n for odd n.
請問這邊會什麼要分奇數和偶數來討論呢?
我想這部分是我最不懂的地方..@@
: Since the step of the sequence is 2, the exponent is divided by 2.
: ╭ s = 0 ╭ u + v = 1
: ┤ and ┤ => (s,t,u,v) = (0,-1,3,-2).
: ╰ -s -2t = 2 ╰ -u -3v = 3
: (n/2)+1
: ╭ (-1) n for even n.
: a(n) = ┤
: │ (n-1)/2 (n-1)/2
: ╰ 3(-1) -2(-1) n for odd n.
謝謝!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.228.27.200