精華區beta Math 關於我們 聯絡資訊
※ 引述《sato186 (銀色轟炸機)》之銘言: : ※ 引述《mqazz1 (無法顯示)》之銘言: : : find a formula for a(n) satisfying the relation : : a(n) = -2a(n-2) - a(n-4) : : with a(0)=0, a(1)=1, a(2)=2, a(3)=3 : : 請問應該怎麼推呢? : 2 : X = -2X -1 => X = -1 (double root). Thus x^4 = -2x^2 - 1 請問如果這樣假設 會不會不方便解? : n/2 n/2 : a(n) = s(-1) + t(-1) n for even n, : (n-1)/2 (n-1)/2 : a(n) = u(-1) + v(-1) n for odd n. 請問這邊會什麼要分奇數和偶數來討論呢? 我想這部分是我最不懂的地方..@@ : Since the step of the sequence is 2, the exponent is divided by 2. : ╭ s = 0 ╭ u + v = 1 : ┤ and ┤ => (s,t,u,v) = (0,-1,3,-2). : ╰ -s -2t = 2 ╰ -u -3v = 3 : (n/2)+1 : ╭ (-1) n for even n. : a(n) = ┤ : │ (n-1)/2 (n-1)/2 : ╰ 3(-1) -2(-1) n for odd n. 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.27.200