精華區beta Math 關於我們 聯絡資訊
1. prove that a connected graph has k vertices of odd degree (k>0) there are k/2 paths, no two of which have common edge that cover all edges in the graph. 這題我看曉園出的解答是這樣的 by corollary: in any graph, there is an even number of vertices that have odd degrees. 所以 k 必為偶數. 加入 k/2 個邊到圖形中, 將所有奇次數端點以配對方式連接起來, 在此結果下找 出圖中一Euler circuit, 然後再將所加入的邊去掉,結果共需 k/2 路徑 但是老師卻問我: how to pick up the k/2 paths without common edges 請問各位高手該如何解釋呢? 2. let G be a graph of order n. If d(G)大於等於(n-1)/2, show that G is connected. 其中 d(G) is the minimum degree of a graph G, defined by d(G)=min { deg(v): v belongs to V(G) } 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.230.37
Sfly :2.是鴿籠原理的直接推論 06/30 07:50
arcadian3 :能請樓上說明清楚一點嗎?謝謝 06/30 15:08