精華區beta Math 關於我們 聯絡資訊
※ 引述《arcadian3 (falco)》之銘言: : 1. prove that a connected graph has k vertices of odd degree (k>0) : there are k/2 paths, no two of which have common edge that cover : all edges in the graph. : 這題我看曉園出的解答是這樣的 : by corollary: in any graph, there is an even number of vertices that : have odd degrees. 所以 k 必為偶數. : 加入 k/2 個邊到圖形中, 將所有奇次數端點以配對方式連接起來, 在此結果下找 : 出圖中一Euler circuit, 然後再將所加入的邊去掉,結果共需 k/2 路徑 : 但是老師卻問我: how to pick up the k/2 paths without common edges : 請問各位高手該如何解釋呢? : 2. let G be a graph of order n. If d(G)大於等於(n-1)/2, show that G is : connected. 其中 d(G) is the minimum degree of a graph G, defined by : d(G)=min { deg(v): v belongs to V(G) } : 謝謝 2. |E(G)| = Σd(v) / 2 >= n.d(G) /2 >= n(n-1)/4 Assume G is disconnected then G can be divided into 2 component G1,G2 without path between G1,G2 Let |V(G1)| = m , |V(G2)| = n-m then |E(G1)| <= C(m,2) , |E(G2)| <= C(n-m,2) but C(m,2) + C(n-m,2) < n(n-1)/4 , for m = 1,...,n-1 -><- So G is connected -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.117.120.229