精華區beta Math 關於我們 聯絡資訊
※ 引述《pobm (妳會更快樂嗎?)》之銘言: : p.114 2 : Suppose f'(x)>0 in (a,b), then f is strictly increasing in (a,b). let g be : its inverse function. Prove that g is differentiable, and that : 1 : g'(f(x))=------- x belong in (a,b) : f'(x) : 做起來有一點奇怪 : g(t)-g(f(x)) g(f(s))-g(f(x)) = s-x : g'(f(x))= lim ---------------- = lim ----------------- : t->f(x) t-f(x) f(s)->f(x) f(s)-f(x) : 1 : = lim ---------------- 可是要滿足所求lim下面不是應該是s->x嗎 : f(s)->f(x) f(s)-f(x) : ------------ : s-x : 但是f(s)->f(x)並沒有強制s->x阿 : 我是想過另外一個可能 就是如果f是f :[a,b]-> f([a,b]) : 那f conti 就保證了g conti (since [a,b] compact) : 那這樣f(s)->f(x)就會imply s-x了 : 其實仔細看Rudin有時候會有點煩惱 : 常常要注意到底這裡的f是從哪映射到哪 : 謝謝^^ Since f'(x)>0 on (a, b), then f is injective on (a,b) (i.e., the inverse of f exists.). Since f is differentiable on (a, b), f is continuous on (a,b). Let f(u)=s, f(v)=t for u, v on (a,b). Estimate the magnitude: g(s)-g(t) g(f(u))-g(f(v)) u-v f(u)-f(v) ----------- = ----------------- = -------------- = [-----------]^(-1) s-t f(u)-f(v) f(u)-f(v) u-v Since the last term tends to [f'(v)]^(-1) as u--->v, then g is differentiable at t, i.e., g'(t) = [f'(v)]^(-1), so that g'(f(v)) = [f'(v)]^(-1) note:因為當u趨近於v時,f(u)會趨近於f(v),則s會趨近於t, 則可以從最後一個等式回推得到答案。 --- 有誤請指正 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.195.33.28