精華區beta Math 關於我們 聯絡資訊
※ 引述《hau》之銘言: : assume μ(X) = 1 : Prove lim ║f║_p = exp [∫ log|f|dμ ]. : p→0 X : positive part of log|f|is integrable : if ∫ log|f|dμ= -∞ : X : in this case lim║f║_p = 0 : p→0 [我看不懂你的提示,下面有個方法應該可以解決之。] Assume μ(X) = 1, and that ∥f∥_r < ∞ for some r > 0. Prove that lim ∥f∥_p = exp {∫ log |f| dμ} if exp {-∞} is defined to be 0. p→∞ X Proof. Notice that lim ∥f∥_p = exp {lim (1/p)‧log (∫_X |f|^p dμ)}, we pay attention to lim (1/p)‧log (∫_X |f|^p dμ): (1) Since -log x is convex, we know that -log (∫_X |f|^p dμ) ≦ ∫_X -log |f|^p dμ by Jensen's inequality. It implies that ∫_X log |f| dμ ≦ (1/p)‧log (∫_X |f|^p dμ). So, ∫_X log |f| dμ ≦ lim inf (1/p)‧log (∫_X |f|^p dμ). (2) Consider (1/p)‧log (∫_X |f|^p dμ) ≦ (1/p)(∫_X |f|^p dμ - 1) by 1+x ≦ e^x, |f|^p - 1 = ∫ ------------- dμ since μ(X) = 1, X p := ∫_{|f|≧1} + ∫_{|f|<1}. ^^^^^^^^^^^^ ^^^^^^^^^^ (A) (B) For (A): It is not hard to see that (|f|^p - 1)/p ↓ log |f| as p↓0, and f in L^r(X) with μ(X) = 1, the dominated function can be (|f|^r - 1)/r, by the inequality (|f|^r - 1)/r ≧ (|f|^p - 1)/p (≧0), where p≦r. So, with help of LDCT (or MCT), we have lim ∫_{|f|≧1} (|f|^p - 1)/p dμ = ∫_{|f|≧1} log |f| dμ. p→0 For (B): It is not hard to see (|f|^p - 1)/p ↑log |f| (≦0) as p↓0. That is, "-"(|f|^p - 1)/p ↓ "-" log |f|. From - (|f|^r - 1)/r in L, say p≦r, we get, by LDCT (or MCT), lim ∫_{|f|<1} - (|f|^p - 1)/p dμ = ∫_{|f|<1} -log |f| dμ, p→0 i.e., ∫_{|f|<1} (|f|^p - 1)/p dμ → ∫_{|f|<1} log |f| dμ. We conclude that ∫_X log |f| dμ ≧ lim sup (1/p)‧log (∫_X |f|^p dμ) from two parts (A), and (B). Finally, we complete it via (1) and (2). □ NOTE. 出處: Real And Complex Analysis-Water Rudin, exer. 5-(d), p. 71. -- Good taste, bad taste are fine, but you can't have no taste. -- ※ 編輯: math1209 來自: 220.133.4.14 (12/28 15:22)
hau :想了非常久的難題,謝謝 01/01 10:41