精華區beta Math 關於我們 聯絡資訊
※ 引述《GSXSP (Gloria)》之銘言: : : -- : : ◆ From: 140.113.211.193 : : → Xixan :沒有內積 怎麼會有直角? 11/19 20:26 : : → GSXSP :有定義內積阿 我是指距離的定義方式不是用內積的型式 11/19 21:44 Pythagorean theorem for an inner product space V: If ∥‧∥ is the norm induced by the inner product and u and v in V are orthogonal (with respect to the inner product), then 2 2 2 ∥u∥ + ∥v∥ = ∥u + v∥ . If you try to use a different norm, this obviously may not hold. Example: y 1 │ │\ │ \ │ \ ┼──── x 0 1 2 Consider R with the norm (x, y) |→ ∥(x, y)∥ = max{|x|, |y|}. The points (0, 1) and (1, 0) are orthognal with respect to the Euclidean inner product and 2 2 ∥(0, 1)∥ + ∥(1, 0)∥ = 2, but this is not equal to 2 2 ∥(0, 1) - (1, 0)∥ = ∥(-1, 1)∥ = 1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 75.62.141.216
GSXSP :我知道不一定成立 我的問題是有沒有可能成立 11/20 14:32
GSXSP :不知道是不是問得有點模糊@@ 11/20 14:34
2 Claim. If ∥‧∥ is a norm on R such that 2 2 2 ∥u∥ + ∥v∥ = ∥u + v∥ 2 whenever u, v in R are perpendicular (i.e. orthogonal in the Euclidean sense), then 2 2 ∥(x, y)∥ = √(ax + by ) where 2 2 a = ∥(1, 0)∥ and b = ∥(0, 1)∥ . If a = b, then ∥‧∥ is a constant multiple of the Euclidean norm. 2 Proof. Let (x, y) be in R . Then (x, 0) and (0, y) are perpendicular, so 2 2 ∥(x, y)∥ = ∥(x, 0) + (0, y)∥ 2 2 = ∥(x, 0)∥ + ∥(0, y)∥ 2 2 2 2 = x ∥(1, 0)∥ + y ∥(0, 1)∥ 2 2 = ax + by. □ ※ 編輯: cgkm 來自: 75.62.141.216 (11/20 14:52)
math1209 :of course, 有可能成立. 但這到底成不成立都不重要. 11/20 14:48
math1209 :比較有意義反而是你之後的逆敘述... 11/20 14:49
math1209 :上兩行回應 GSXSP. 11/20 14:49
math1209 :我關心的是:無限維度...=.= 11/20 14:59
math1209 :我傾向於對於 GSXSP 之後的那個逆敘述, 那兩個 11/20 15:01
math1209 :norms 不一定等價. (有限維度在此就變成 non-sense) 11/20 15:01