精華區beta Math 關於我們 聯絡資訊
※ 引述《k6416337 (とある煞氣の光希)》之銘言: : http://www.math.ccu.edu.tw/chinese/test-paper/Phd/95_function.pdf Suppose μ is a positive measure on X, f:X→[0,∞] is measurable, ∫ f = c , where 0<c<∞, and α is a constant. Prove that X lim ∫ n log [ 1 + (f/n)^α ] dμ = c if α=1, n→∞ X 0 if 1<α<∞, ∞ if 0<α<1. Proof. (1) For 1≦α, we notice that n log [ 1 + (f/n)^α ] ≦αf (proved later*). In addition, lim n log [ 1 + (f/n)^α ] = f if α=1, n→∞ = 0 if 1<α<∞. So, by LDCT we get lim ∫ n log [ 1 + (f/n)^α ] dμ = c if α=1, n→∞ X 0 if 1<α<∞. (2) For 0<α<1, we notice that n log [ 1 + (f/n)^α ] →∞ as n→∞. Then by Fatou's lemma we get lim inf ∫ n log [ 1 + (f/n)^α ] dμ n→∞ X ≧ ∫ lim inf n log [ 1 + (f/n)^α ] dμ = ∞. X n→∞ So, lim ∫ n log [ 1 + (f/n)^α ] dμ = ∞. n→∞ X NOTE. (1) 出處: Real And Complex Analysis-Water Rudin, exer. 9, p. 32. (2) 也因為 Rudin 書上給的 hint. 我才找得到界定函數 αf. (3) 至於那個不等式,你就自己證明了… -- Good taste, bad taste are fine, but you can't have no taste. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.133.4.14
k6416337 :謝啦 12/28 11:28