精華區beta Math 關於我們 聯絡資訊
※ 引述《k6416337 (第一次獻給了涼宮版-光希)》之銘言: : 1.Consider the sequence of functions : fn(x)=╴╴x╴╴ for all x in |R,n=1,2,3,... : 1+nx^2 : (i)Show that {fn} converges uniformly on |R to a differentiable function f. : (ii)Show that f'(x)≠lim fn'(x) at some point in |R. : n→∞ : 第(i)題我不知道該怎麼證,要怎樣變化才可以讓它只跟n有關? : (ii)的話我會,f'(0)=0≠lim fn'(0)=1. Proof. Notice that for any fixed x we have lim f_n(x)=0. Let us consider {1 + n(x^2)} ≧ 2(√n)(|x|) by A.P. ≧ G.P. Therefore, we have |f_n(x) - 0| ≦ 2/√n for all x in |R. That is, f_n → f uniformly on |R. 1 - nx^2 On the other hand, f'≡ 0 on |R by f ≡ 0 on |R. And f'_n(x) = ----------- . (1+nx^2)^2 So, we have f'_n(0) = 1, which implies lim f'_n(0) = 1 ≠ 0. In addition, for any x ≠ 0, we have f'_n(x) → 0 by 1 - n x^2 ------------------------ → 0. n^2 x^4 + 2n x^2 + 1 Therefore, we have the conclusion: f'(x) = lim f'_n(x) is correct if x ≠ 0, but false if x = 0. NOTE. (1) Rudin, 高微, Ch7. 第七題。 (2) 判斷均勻收斂與否,我們有許許多多的方法,但最好還是從定義去著手,然後考慮 其變形,兩本高微名著:Apostol 與 Rudin 習題最好每一題一定要作一次! Sequence (Series) of functions 在分析學裡可是有極端重要的地位。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.116.231.200
k6416337:感謝!沒想到這個 早知道當初就讀Apostol了 要考試了 03/04 19:11