精華區beta Math 關於我們 聯絡資訊
※ 引述《Honor1984 (希望願望成真)》之銘言: : ※ 引述《u2150260 (鴻哥)》之銘言: : : 1. Find the necessary and sufficient conditions on complex number z and w : : in order that |z+w|=|z|+|w| : ─── ─ ─ : |z+w|^2 = (z+w)(z+w) = |z|^2 + |w|^2 + z w + w z : ─ : = |z|^2 + |w|^2 + 2 Re( z w) : ≦ |z|^2 + |w|^2 + 2|z||w| = (|z|+|w|)^2 : 因 : ─ : Re( z w) = Re[(a-bi)(c+di)] = ac + bd ≦ |(ac + bd)| : ≦ √(a^2 + b^2)√(c^2 + d^2) = |z||w| : 等號成立條件a/c = b/d : 所以是當z = tw for t belongs to postive number : : 2.For any real number z and w ,prove that : : |z|/(1+|z|) + |w|/(1+|w|) ≧ |z+w|/(1+|z+w|) Prove z and w are positive z/(1+z) + w/(1+w) >= z/(1+z+w) + w/(1+z+w) = (z+w)/(1+z+w) ##### -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.137.132.211