精華區beta Math 關於我們 聯絡資訊
※ 引述《hau (小豪)》之銘言: : x : Let p > 1,f ≧ 0,f belongs to L^p((0,∞)) and F(x) = ∫ f(t) dt. : 0 : Show that F(x) = o(x^(1/q)) as x→∞ where (1/p) + (1/q) = 1. : 也就是要證明  lim F(x)/x^(1/q) = 0. : x→∞ : 這題其實是兩小題,另一小題是證明 F(x) = o(x^(1/q)) as x→0. : F(x) = o(x^(1/q)) as x→0 這情況簡單, : 那逼近∞時,我試著加一個x的次方進去,再用Holder's inequality : 但不行,也試過用Jeanson's inequality,不知是否是函數找的不好,也不行…… F(x) Suppose lim sup ──── = c > 0. Put g(x)= f(x)/c. x→∞ x^(1/q) Then there exists an increasing sequence {x[n]} with x[n] → ∞ and 1/q x[n+1] 1/q x[n] (1-ε[n]) < ∫ g(x) dx < x[n] (1+ε[n]) 0 where ε[n] →0. Moreover, since x[n] goes to infinity, we may assume x[n+1] > 2 x[n]. Put I[n] = [ x[n], x[n+1] ]. By the Holder inequality, 1/q 1/q 1/q 1/q x[n+1] - x[n] - (ε[n+1] x[n+1] + ε[n] x[n] ) ───(A)─── ───────(B)────── p 1/p 1/q < ∫g(x) dx < (∫g(x) dx) (x[n+1]-x[n]). I[n] I[n] Since x[n+1] > 2x[n], we have (x[n+1]-x[n])/x[n+1] > 1/2. For (A), after appling the Mean Value Theorem we get: (A) (x[n+1]-x[n])^(1/q) 1/q ──────── ≧ ────────── > (1/q)(1/2) (x[n+1]-x[n])^(1/q) q x[n+1]^(1/q) For (B), put δ[n] = max{ε[n],ε[n+1]} (B) x[n+1] 1/q 1/q ──────── ≦ 2δ[n]( ──────) < 2δ[n] (1/2), (x[n+1]-x[n])^(1/q) x[n+1]-x[n] which goes to zero as n goes to infinity. Hence p p (1/q)/2 ≦ lim inf ∫ g(x) dx. n →∞ I[n] ∞ p ∞ p This implies ∫ g(x) dx = ∞ and thus ∫ f(x) dx = ∞. 0 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.231.231.25 ※ 編輯: ppia 來自: 125.231.231.25 (02/20 22:03)
hau :謝謝! 03/01 23:09
※ 編輯: ppia 來自: 125.231.219.112 (03/19 11:23) ※ 編輯: ppia 來自: 125.231.219.112 (03/19 11:25)