精華區beta Math 關於我們 聯絡資訊
※ 引述《ericakk (代買IPSA單品8折)》之銘言: : 欲證明:An extended real-valued function f is measurable if and only if : the sets Α={x屬於χ:f(x)= +∞},Β={x屬於χ:f(x)= -∞} belong to Χ, : and the real-valued function f1 defined by : f1(x) = f(x) ,if x not belong to Α∪Β : = 0 ,if x belong to Α∪Β : Proof: : 左至右:If f is in M (χ,Χ), it has already been noted that Α and Β : belong to Χ, Let α belong to R and α ≧ 0, then : {x屬於χ:f1(x)>α} = {x屬於χ:f(x)>α}\Α Suppose x lies in {x屬於χ:f1(x)>α}. Since f1(x)>α and α≧0,f1(x)=f(x) by the definition of f1.So f(x)>α. Again,by definition,x doesn't lie in A∪B.So x doesn't lie in A. Hence,x lies in {x屬於χ:f(x)>α}\Α. Suppose x lies in {x屬於χ:f(x)>α}\Α. Since x doesn't lie in A,by the definition of f1,f1(x)=f(x)>α. Hence,x lies in {x屬於χ:f1(x)>α}. : If α < 0, then : {x屬於χ:f1(x)>α} = {x屬於χ:f(x)>α}∪Β Suppose x lies in {x屬於χ:f1(x)>α}. Since α<0,f1(x) is probably zero. Case 1:x lies in A∪B. Then x lies in A or B and f1(x)=0. If x lies in A,then f(x)=+∞>α. If x lies in B,done. Case 2:x doesn't lie in A∪B. Then f(x) is finite and f1(x)=f(x).So f(x)>α. Hence,x lies in {x屬於χ:f(x)>α}∪Β. Suppose x lies in {x屬於χ:f(x)>α}∪Β. If x lies in B,then f1(x)=0>α. If x lies in {x屬於χ:f(x)>α}, Case 1:x lies in A. then f1(x)=0>α. Case 2:x doesn't lie in A. then f(x) is finite and f1(x)=f(x)>α. Hence,x lies in {x屬於χ:f1(x)>α}. : Hence, f1 is measurable. : 右至左:if Α and Β belong to Χ, and f1 is measurable, then : when α ≧ 0, {x屬於χ:f(x)>α} = {x屬於χ:f1(x)>α}∪Α : when α < 0, {x屬於χ:f(x)>α} = {x屬於χ:f1(x)>α}\Β Use the same way as above. : Hence, f is measurable. : 我一直看不懂∪跟 \ 怎麼來的?>< : 麻煩請用白話的方式說明一下 謝謝您.... -- 律:知道嗎?聽說我們的歌被海外的電視台所錄用耶!看來我們離武道館不遠了 唯:真的嗎?那真的是太好了,我一直夢想能在武道館彈著吉太,好高興 釉:小唯能高興真的是太好了,呵呵~ 澪:拜託!那個明明是盜用不是錄用,你們怎麼還這麼高興? 律、唯、釉:啊?什麼? 輕音部 澪:絕望啦!我對盜用錄用分不清楚的輕音部社員們絕望啦! 邁向武道館之路 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.178.13 ※ 編輯: k6416337 來自: 140.113.178.13 (02/27 13:16) ※ 編輯: k6416337 來自: 140.113.178.13 (02/27 13:17)
ericakk :謝謝您!! 02/28 10:00