精華區beta Math 關於我們 聯絡資訊
※ 引述《keroro321 (日夕)》之銘言: : 這問題出自一道習題 : ( Exercise 9 pp.133 W.Rudin:"Real and complex analysis"3d ed.) : Suppose that { Fn(x) } is a sequence of positive continuous functions : on I=[0,1] ( Fn≧0 ) , that μ is a positive Borel measure on I, and : that ( m : Lebesgue measure on I ) : (1) lim Fn(x)→0 a.e.[m] : (2) ∫Fn(x)dm = 1 for all n : (3) lim∫g Fn(x)dm =∫g dμ for every "continuous function g(x) on I" : (All integrals are over I) : Does it follow that : μ nad m are mutually singular (μ⊥m ) : 我有一些例子,是符合上述條件而且 : μ nad m are mutually singular (μ⊥m ) : 所以我"猜測"應該是μ⊥m. : 但是我還沒能證出我要的結果 : 請各位大大給一些提示,困擾了好久.....介.介 這應該是不對 Put I_n,k = [(k-1)/2^n,k/2^n], where k = 1,2,...,2^n. Let Fn be a sequence of non-negative continuous functions defined on [0,1] satisfying: 1-1/2^n (a) Fn = 0 on [ 0, ────] ; 2^n (b) ∫ Fn dm = 1/2^n; I_n,k (c) Fn(x + 1/2^n) = Fn(x), for all x with 0 ≦ x ≦ 1-1/2^n. ∞ m({x│Fn(x)!=0, for all n≧N.}) ≦ Σn=N 1/2^n →0 as N→∞. Hence Fn→0 a.e. [m]. By (b) and (c), ∫ Fn dm = 1.Thus porterties (1) and (2) are fullfilled. [0,1] Next, for any continuous g, for any ε>0, there corresponds some N such that whenever n>N, |g(x)-g(k/2^n)|<ε, for any x in I_n,k , for k=1,2,...,2^n. Hence for each n > N, 1 │∫ Fn(x)g(x)-g(x)dx│ 0 2^n ≦ Σ │∫Fn(x)g(x)-Fn(x)g(k/2^n) dx + ∫-g(x) + Fn(x)g(k/2^n) dx│ k=1 I_n,k I_n,k ───(A)──── (A) = g(k/2^n)/2^n =∫g(k/2^n) dx I_n,k 2^n ≦Σ ∫ Fn(x)│g(x)-g(k/2^n)│+│g(x)-g(k/2^n)│dx < 2ε. k=1 I_n,k Therefore, 1 1 1 lim ∫ Fn g dm = ∫ g dm = ∫ g dμ, which means m =μ. n→∞ 0 0 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.231.221.192 ※ 編輯: ppia 來自: 125.231.211.133 (04/03 20:25) ※ 編輯: ppia 來自: 125.231.211.133 (04/03 21:49)