精華區beta Math 關於我們 聯絡資訊
※ 引述《tsaihohan (有人想一起下圍棋嗎)》之銘言: : Given a Lebesgue measurable subset A of R^n, we : denote by │A│ the Lebesgue measure of A. Given : a Lebesgue integrable function g on R^n, the Hardy : -Littlewood maximal function M_g of g is defined : on R^n by : M_g(x)=sup ∫│g│ /│Br(x)│ : r>0 Br(x) : where Br(x) is the open ball with radius r centered : at x屬於R^n. : (a) Prove that for each t屬於R, the set {x屬於R^n:M_g(x)>t} : is open. Fix some x with M_g(x) > t. Then for some R > 0 ∫ │g│ B_R(x) defn I ──── === ──── > t. |B_R(x)| ωn R^n I Clearly, there exists some δ > 0 with ───── > t. ωn (R+δ)^n For each y with |y-x| < δ, ∫ │g│ ≧ ∫ │g│ = I. B (y) B (x) R+|y-x| R Hence ∫ │g│ B (y) R+|y-x| I M (y) ≧ ─────── ≧ ──── > t. g │B (y)│ ωn (R+δ)^n │ R+|y-x| │ : (b) It follows from (a) that M_g is a measurable function : on R^n. Prove that when ∫│g│>0, we have ∫│M_g│=∞. : R^n R^n If ∫│g│> 0, then ∫│g│= L > 0 for some R large enough. B_R For each y , M_g(y) ≧ L/[ωn (|y|+R)^n]. Hence n n d y d y ∫│M_g│ > L ∫ ──── > ∫ ──── |R^n |R^n (|y|+R)^n |y|>R (2|y|)^n ∞ r^(n-1) = L ∫ ──── nωn dr = ∞. R (2r)^n -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.231.219.112
tsaihohan :感謝您^^ 03/19 21:01
※ 編輯: ppia 來自: 125.231.219.112 (03/19 23:03)