精華區beta Math 關於我們 聯絡資訊
※ 引述《ppia ((= =))》之銘言: : ※ 引述《keroro321 (日夕)》之銘言: : 感謝你的回應!!我看了你舉的例子!!,但是有個地方的估算應該是錯了. : Let Fn be a sequence of non-negative continuous functions defined on [0,1] : satisfying: : 1-1/2^n : (a) Fn = 0 on [ 0, ────] ; : 2^n : 1/2^n : (b) ∫ Fn dm = 1/2^n; : 0 : (c) Fn(x + 1/2^n) = F(x), for all x with 0 ≦ x ≦ 1-1/2^n. : ∞ : m({x│Fn(x)!=0, for all n≧N.}) ≦ Σn=N 1/2^n →0 as N→∞. : Hence Fn→0 a.e. [m]. By (b) and (c), ∫ Fn dm = 1.Thus porterties : (1) and (2) are fullfilled. [0,1] : Next, for any continuous g, for any ε>0, there corresponds some N with : k k-1 k : |g(x)-g(──)|<ε, for any x in [──, ──] , for k=1,2,...,2^n, for all n>N. : 2^n 2^n 2^n : Hence for each n > N, : 1 : ∫ │Fn(x)g(x)-g(x)│dx ≦ : 0 : 2^n k/2^n : Σ ∫ Fn(x)│g(x)-g(k/2^n)│+│g(x)-g(k/2^n)│dx < 2ε. : k=1 (k-1)/2^n ###### : 在這兒你的估算不對 Fn(x)│g(x)-g(k/2^n)│+ Fn(x)g(k/2^n) +........ 少了 | Fn(x)g(k/2^n)-g(k/2^n)│ 這項經過積分加總後影響可是非常大,上述估計沒估到這項 @@ ###### Therefore, : 1 1 1 : lim ∫ Fn g dm = ∫ g dm = ∫ g dμ, which means m =μ. : n→∞ 0 0 0 還是感謝你的回應!!!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.228.101