精華區beta Math 關於我們 聯絡資訊
※ 引述《burgerking07 (joy)》之銘言: : Show: : If a function f satisfies f'''>0 on the real line, : then for any t1< t2< t3< t4, : we have : 1 1 1 1 : det ( t1 t2 t3 t4 ) >0 . (証行列式值為正) : t1^2 t2^2 t3^2 t4^2 : f(t1) f(t2) f(t3) f(t4) : Thanks! : ==================================================================== : P.S. : 如果題目改成 f''>0, t1<t2<t3, : 我可以証 : 1 1 1 : det ( t1 t2 t3 ) >0 , : f(t1) f(t2) f(t3) : 不過上面題目還是証不出來. Let Ri=[t1^i t2^i t3^i t4^i] i=0,1,2 ri=[t1^i t2^i t3^i] i=0,1,2 F =[f(t1) f(t2) f(t3) f(t4)] E =[f(t1) f(t2) f(t3)] Since [ 1 1 1 ] A = det[ t1 t2 t3 ]=(t3-t2)(t3-t1)(t2-t1)>0 [t1^2 t2^2 t3^2] Hence {r0,r1,r2} linearly independent, So we can find a,b,c such that E=a*r0+b*r1+c*r2 Let g(t)=f(t)-(a+b*t+c*t^2) Clearly g(ti)=0 for i=1,2,3 [ R0 ] (Row operation) [ R0 ] [ R1 ] F--->F-a*R0-b*R1-c*R2 [ R1 ] [ R2 ] -----------------------> [ R2 ] [ F ] [0 0 0 g(t4)] Hence [ R0 ] Det[ R1 ]=A*g(t4) [ R2 ] [ F ] Since g(t)=f(t)-(a+b*t+c*t^2) So g'''(t)=f'''(t)>0 By Mean Value Theorem We can find zi,i=1,2,3 such that t1 < z1 < t2 < z2 < t3 < z3 < t4 and g(t2)-g(t1) g(t3)-g(t2) g(t4)-g(t3) g'(z1)= ----------- = 0 g'(z2)= ----------- = 0 g'(z3)= ----------- t2-t1 t3-t2 t4-t3 By Mean Value Theorem We can find yi,i=1,2 such that z1 < y1 < z2 < y2 < z3 and g'(z2)-g'(z1) g'(z3)-g'(z2) g'(z3) g''(y1)= ------------- = 0 g''(y2)= ------------- = ---------- z2-z1 z3-z2 (z3-z2) By Mean Value Theorem again, We can find x such that y1 < x < y2 and g''(y2)-g''(y1) g''(y2) g'(z3) g'''(x)= --------------- = ----------- = ------------- y2-y1 (y2-y1) (y2-y1)(z3-z2) g(t4) = ----------------------- (y2-y1)(z3-z2)(t4-t3) Since g'''(x)>0 So g(t4)>0 Hence [ R0 ] Det[ R1 ]=A*g(t4)>0 Q.E.D. [ R2 ] [ F ] Clearly we can extend this problem to the more general cases. -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.203.189 ※ 編輯: cometic 來自: 140.114.203.189 (06/25 04:04) ※ 編輯: cometic 來自: 140.114.203.189 (06/25 04:12) ※ 編輯: cometic 來自: 140.114.203.189 (06/25 04:14)
wheremi :推!! 06/25 09:58