精華區beta Math 關於我們 聯絡資訊
取partition x0=1 1 1 xn=(── + ──)/2 n>=1 n n+1 x0'=0 then x0>x1>x2>....>xn>x0' (中間砍n刀的情況) Now consider finite Riemann sum n Σ f(x)(x - x ) + f(0)(x - x ) (最後一項只是為了補足整個定義域) k=1 k k k-1 0' n is equal to 0 , because for k from 1 to n , f(xk) =0 , and f(0)=0 so when n→infinity n lim Σ f(x)(x - x ) + f(0)(x - x ) = 0 (最後一項只是為了補足整個定義域) n→inf k=1 k k k-1 0' n so the Riemann integral of f(x) exists , equal to 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.25.179.188 ※ 編輯: znmkhxrw 來自: 114.25.179.188 (11/29 03:22)
k6416337 :根據黎曼可積的定義下,有這個定理結果嗎? 11/29 09:03
egg12388 :upper & lower sum? 12/03 17:29