精華區beta Math 關於我們 聯絡資訊
: 2.Assume that f_n: R→R (n=0.1.2...) is a sequence of differentiable : functions s.t each f_n(x) is a solution of the equation : y'(1 + x^2 + xy + y^2) = 1. If sup_n ∣f_n(1/n)∣<∞, : prove that there exists a subsequence f_n_k(x) s.t : lim f_n_k(x) = f(x) exists for x in R. : k→∞ : This limit f(x) must also be a solution of y'(1 + x^2 + xy + y^2) = 1. : 謝謝~ 早上起來想了個辦法, 不過小弟學藝不精,沒辦法很確定自己是不是對的。 所以想說PO上來給大家看看有沒有哪裡有問題@@ 如果有錯誤不吝指正。也請各位鞭小力一點.. .. == Note that |f'_n(x)|=<1. Let Q be the set of rational numbers. Since Q is countable and f_n(x) is pointwise bounded (Let S=sup|f_n(1/n)|, fix any x, |f_n(x)-f_n(1/n)|=|f'_n(t)(x-1/n)| =<|x-1/n|<|x|+1 so |f_n(x)|-|f_n(1/n)|=<|x|+1, |f_n(x)|=< S+|x|+1) , there is a subsequence of f_n, say f_n_k, such that {f_n_k} converges pointwisely on R by the denseness of Q. ^^ 此步要扣分,不過因為 f_n_k 原本就收斂 uniformly on every compact subset. 所以是連續函數。 We denote the limit by f(x). By assumption, {f'_n_k} is uniformly bounded, and f_n_k converges on R. Compute f''_n_k=<(2|x|+3|y|)/(1+x^2+xy+y^2)^2 < M for some M>0. (Here y=f_n_k(x)) This means f'_n_k is equicontinuous on R. There is a further subseq of f'_n_k, say f'_n_k_i, such that f'_n_k_i converges pointwisely to g for some g. Let z be any point on R, choose a compact set K such that z\in int(K). Now f'_n_k_i converges uniformly on K. And lim f_n_k_i(x)=f(x), therefore, lim f'_n_k_i(x)=f'(x) uniformly on K, specially at z And the limit f(x) at x=z also satisfies that f'(z)(1+z^2+zf(z)+f^2(z))=1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.50.253 ※ 編輯: yusd24 來自: 140.112.50.253 (09/05 11:56) ※ 編輯: yusd24 來自: 140.112.50.253 (09/07 09:30)