※ [本文轉錄自 Dirichlet 信箱]
作者: pretend.bbs@lalala.twbbs.org ("Weak and only weak")
標題: Re: e 為無理數
時間: Sat Jul 19 21:44:02 2014
作者: pretend (Big Lion) 站內: pretend
標題: Re: e 為無理數
時間: Fri Nov 5 07:48:14 2004
※ 引述《pretend (Big Lion)》之銘言:
> oo
> Assume e is a rational number ==> e = Σ 1/k! = q/p , gcd(p,q)=1 , p,q belong
> k=0
> p
> to N . Hence e(p!) = (Σ p!/k!) + [p!/(p+1)! +p!/(p+2)! +...] = q[(p-1)!]
> k=0
> But [p!/(p+1)! +p!/(p+2)! +...] < p!/(p+1)! [1 +1/(p+1) + 1/(p+1)^2 + ...]
> 1
> = [p!/(p+1)!] --------- = 1/p < 1
> p/(p+1)
> p
> It is obvious that (Σ p!/k!) + [p!/(p+1)! +p!/(p+2)! +...] ≠ q[(p-1)!]
> k=0
> So e is a irrational number ......
note : e > 2 is trivial ....
e= 1 + 1 + 1/2! + ... < 1 + 1 + 1/2!(1 + 1/3 + 1/3^2 + ...)
= 1 + 1 + (1/2!)(3/2) = 2 + 3/4 < 3
Since 2 < e < 3 , it follows that p ≠ 1
--
===== ╱ ◢ === ╱ ◢ === ╱ ◢ ===========================
=== ╱ ╱ ▌== ╱ ╱ ▌== ╱ ╱ ▌ === 中山lalala小站 ======
= ◢▄▄ ╱ —▌ ◢▄▄ ╱ —▌ ◢▄▄ ╱ —▌‧twbbs‧org ==============
< From : 220-142-8-99.dynamic.hinet.net >
※ 發信站: 批踢踢實業坊(ptt.cc)
※ 轉錄者: Dirichlet (111.255.113.174), 07/19/2014 21:45:56