精華區beta NSYSU_math 關於我們 聯絡資訊
※ [本文轉錄自 Dirichlet 信箱] 作者: pretend.bbs@lalala.twbbs.org ("Weak and only weak") 標題: π為無理數 時間: Sat Jul 19 21:44:06 2014 作者: pretend (Big Lion) 站內: pretend 標題: π為無理數 時間: Fri Nov 5 09:24:43 2004 (2k) (2k) 1 n (-1)^k * [f (0) + f (1)] Claim 1 : π∫f(x)sin(πx)dx = Σ --------------------------- = I 0 k=0 π^2k 其中 f(x) = x^n(1-x)^n/n! 由部分積分 2n 次可立即得證 (k) (k) (k) (k) Claim 2 : f(x)=f(1-x) ==> f (x) = (-1)^k * f (1-x) ==> f (0) = (-1)^k * f (1) for any positive integer k (k) k k (i) (k-i) Claim 3 : f (x) = 1/n!Σ {C [x^n] * [(1-x)^n] } i=0 i 0 , 0≦i<n (k) x^n 在 x=0 時的 i 階導數為 = n! , i = n ==> f (0) 是整數 0 , i > n p^2n Claim 4 : lim -------- = 0 , 其中 p 為正整數 n->oo n! (p^2n)/n! -> 0 , as n -> oo <==> k^n/n! -> 0 , n -> oo (p^2 = k) k^n/n! = (k^k/k!)(k/k+1)*...*(k/n!) < (k^k/k!)[k/(k+1)]^n-k -> 0 as n -> oo pf: If π is a rational number ==> π = p/q , gcd(p,q) = 1 , p,q belong to N , ==> I*P^2n is a integer (By Claim 1,2,3) Moreover , since 0<x<1 , So 0≦[x^n][(1-x)^n]sin(πx)≦1 ==> 0 ≦ I*P^2n ≦ (π*P^2n)/n! , By Claim 4 we have (π*P^2n)/n! -> 0 as n -> oo , it follows that 0 ≦ I*P^2n ≦ 1 , if n is sufficient large , but this violates that I*P^2n is a integer (=><=) Hence , π is a irrational numbber. -- ===== === === =========================== === ╱ ▌==╱ ▌== ╱ ▌ === 中山lalala小站 ====== = ◢▄▄ ╱ —▌ ◢▄▄ ╱ —▌ ◢▄▄ ╱ —▌twbbsorg ============== From : 220-142-8-99.dynamic.hinet.net → pretend 修改本文於 Fri Nov 5 09:31:46 2004 ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 轉錄者: Dirichlet (111.255.113.174), 07/19/2014 21:46:56