精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學上 課程性質︰機械系大二上必修 課程教師︰施文彬 開課學院:工學院 開課系所︰機械系 考試日期(年月日)︰2005.11.14 考試時限(分鐘):110 min 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Rule: No calculators are allows. You are allowed to bring an A4 size information sheet. Please provide the details of your calculation. Good luck! 1. Solve the following differential equations. x^2 x^2 (a)(7%) e dy +[ye /x -1]dx = 0 y 2 (b)(7%) xe dy +[(x +1)/y]dx = 0, y(1) = 0 2 (c)(8%) x dy/dx = y(x+2y) 2. Consider the differential equation y"+y'+2y =cosx (a)(5%) Find the solution to the homogeneous equation (b)(5%) Find a particular solution (c)(5%) Write down the general solution (d)(5%) Find the solution that satisfies the initial condition y(0)=1, y'(0)=2 (e)(8%) Write down the general form of a particular solution to y"+2y'-3y =4 +7sinx +x^2 +e^x Do not solve for the (undetermined) coefficients. 3.(a)(15%) Find the first four nonzero terms of two linearly independent 2 2 3 series solution of 3x y"+(6x -7x)y'+3(1+x)y =0 (b)(10%) Find the first four nonzero terms of the series solution of the given initial value problem, about the point where the initial conditions are given: y"-ln(x)y'=-1+x; y(1)=1, y'(1)=π. 4. Find the Laplace transform of t 2(t-v) (a)(5%) f(t)=∫ e sinh(v)dv 0 t -3τ (b)(5%) f(t)=∫ e sin(τ)dτ 0 5.(15%) Use the Laplace transform to solve the initial value problem 2t y"-2y'-15y = e +2δ(t-1); y(0)=0, y'(0)=0. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.191.239
lovehan:推一下 施文彬 XD 02/08 13:24