精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學 下 課程性質︰必修 課程教師︰林沛群 開課學院:工學院 開課系所︰機械系 考試日期(年月日)︰2010/5/5 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(55%) Consider functions f(x) and g(x) shown below f(x) ^ (1) \ | \ | _____\|______1_> x (x與y的範圍皆在1與-1之間) -1 |\ | \ (-1) \ g(x) | (2) |╲ | ╲ ╲ (1) ╲ ╲ | __-1___\|______1____> x (a) (10%) Find the Fourier seriers of f(x) on the interval [-1 1] (b) (10%) Use a convergence theory to determine the sum of the Fourier series derived in (a), explain why, and plot this Fourier of f(x) vs. x (c) (5%) Roughly sketch the first and tenth partial sum of the above series (d) (10%) Derive the Fourier-Legendre series of f(x) on the interval [-1 1], and roughly sketch its first and tenth partial sum. (e) (10%) Find the phase angle form of the Fourier series of g(x) on the interval [-1 1], and plot some points of the amplitude spectrum of the function (f) (10%) With extra definition f(x) = 0 ︳x︳> 1, find the Fourier integral of f(x), and plot this Fourier integral of f(x) vs. x 2. (10%) If a is a nonzero real number, proof 1 ^ w F[ f(at) ] (w) = ─── f (——) |a∣ a 3.(15%) Determine the Fourier transform of f(t) f(t) = ─ cos(t) -k ≦ t < k │ ─ 0 t <-k or t≧k 4.(20%) Consider the Sturm-Liouville problem y'' + λy = 0 y(0) = 0, y'(L) = 0 (a)(5%) Classify it is a regular, periodic, or singular problem; state the revelant interval. (b)(15%) Find the eigenvalues and corresponding eigenfunctions. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 124.11.64.144