精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學二 課程性質︰必修 課程教師︰謝傳璋 開課學院:工學院 開課系所︰工程科學及海洋工程學系 考試日期(年月日)︰98/04/09 考試時限(分鐘):110分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1. Find the Fourier Series of the periodic function of period 2π: f(x)= x^2/4 when |x|<π and verify the identities: π^2/6 = 1+1/2^2+1/3^2+1/4^2+1/5^2+....... π^2/12= 1-1/2^2+1/3^2-1/4^2+1/5^2-....... 2. Find the Fourier integral representation of the function: ┌ │ sinx |x|<π f(x)= │ │ 0 |x|>π └ 3. Consier a real time signal f(t) for -∞ < t < ∞, and a truncated time signal f (t) which is defined by : ┌ T │ f(t) -T/2 < t < T/2 f (t)≡│ T │ 0 otherwise └ If the Fourier transform of f (t) is defined by: T ∞ -iωt F(ω)≡1/2π∫ f (t)*e dt -∞ T when this truncated time signal is expressed by its Fourier series,we have: ∞ inωot f (t)= Σ Cn*e dt for -T/2 < t < T/2 n=-∞ T/2 -inωot where ωo≡2π/T ; Cn = 1/T ∫ f (t)*e dt -T/2 T Find the relationship between F(ω) and Cn 4.(a) Solve the following wave equation of u(x,t) d^2u/dt^2 = c^2 d^2u/dx^2 , 0 < x < L , 0 ≦ t ----(1) ┌ │ u(0,t)=0 0≦t<∞ -----(2) f(x) B.C:│ u(L,t)=0 1.0│------- └ │ ╱\ │ ╱ \ I.C │/ \ ┌ 0└──────── x │ 2x/L ; 0≦x≦L/2 L u(x,0)=│ ----(3) │ 2(L-x)/L ; L/2≦x≦L └ u (x,0)=0 t (b) Plot the shape of u(x,t) at t = L/2c and t = L/c 5. Use the method of Fourier transform,find the solution (you may express the solution in double integral form) of the following heat equation: du/dt=c^2 d^2u/dx^2 -∞ < x < ∞ ; t > 0 ---(1) I.C. u(x,0)=f(x) -∞ < x < ∞ 6. Consider a vibrating rectangular membrane with fixed edge : d^2u/dt^2 = c^2*(d^2u/dx^2 + d^2u/dy^2) 0≦x≦a ; 0≦y≦b ; t>0 ---(1) that satisfies the boundary condition u=0 on the boundary of the membrane for all time t≧0. Find the "mode shape"and the corresponding "natural frequency"of this vibrating membrane. y │ u=0 b ├─────┐ │ │u=0 u=0 │ │ └─────┴─x 0 u=0 a -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.165.138.230