精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學二 課程性質︰必修 課程教師︰李克強 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰101/4/20 考試時限(分鐘):110(後延至130) 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 2 (1)(25%)Find the solution T(x,y) of Laplace equation (▽ T=0) in the semi-infinite strip (y≧0, 0≦x≦a), also satisfying the boundary conditions: T(0,y)=T(a,y)=0, y>0 T(x,0)=f(x), 0≦x≦a and the additional condition that T(x,y)→0 as y→∞ ∞ 0 │ │ │ │ │ │ │ │ │ │ y-axis │ │ │ │ │ │ │ │ │ │ └────────┴─── x-axis 0 f(x) a 2 δu δ u (2)(25%)Find the solution u(x,t) of the PDE:-----=(a^2)-------+x^2 subject to δt 2 δx the boundary conditions: u(0,t)=T1, u(L,t)=T2, t>0 Where T1, T2 are given constant, and the initial condition:u(x,0)=f(x) 2 (3)(25%)Find the solution T(r,θ) of Laplace eqution in a disc with ▽ T=0 → 2 2 δ T 1 δT 1 δ T (-------) + -----(-----) + -------(-------)=0, 0≦r≦R. The distribution of T 2 r δr r^2 2 δr δθ at perimeter(r=R) is prescribed as T(R,θ)=1+2cosθ+3cos2θ+4sinθ (The given image of the problem is a circle whose radius is R, and the values of T(R,θ) is equal to f(θ) ) (4)(25%)Find the solution T(r,θ,z) of the Laplace equation ▽ T=0 → 2 2 2 δ T 1 δT 1 δ T δ T (-------) + -----(-----) + -------(-------) + (-------)=0 in a semi-cylinder 2 r δr r^2 2 2 δr δθ δz as shown,(A image of semi-cylinder with a radius R and length L ) satisfying the boundary conditions: δT T(r,θ,0)=-----(r,θ,L)=0, T(r,0,z)=T(r,π,z)=T1, T(R,θ,z)=T2, δz .T(0,θ,z)=finite General solution of Bessel differential equation: (x^2)y"+x'y+((λx)^2-μ^2)y=0, y(x)=c1J (λx)+c2Y (λx) μ μ General solution of modified Bessel differential equation: (x^2)y"+x'y-((λx)^2+μ^2)y=0, y(x)=c1I (λx)+c2K (λx) μ μ The graph of these four kinds of Bessel function is given. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.193.186 ※ 編輯: tsf73 來自: 218.167.193.186 (04/20 21:09)
tigerflyer :看到名字我嚇一跳=.= 04/23 20:12
tsf73 :國務院副總理? 04/23 22:34