精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學二 課程性質︰必修 課程教師︰李克強 開課學院:工學院 開課系所︰化學工程學系 考試日期(年月日)︰102/04/19 考試時限(分鐘):120 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (一) (25%) Find the Fourier Seried expansion of f(x)=exp(x) in the interval [-π,π]. (二) (25%) Find the solution of the PDE ▽^2 ψ = α^2 ψ, where α^2 is a given real constant in the domain of a disc with radius R as shown below. The distribution of ψ along the edge is given as f(θ). ð^2 ψ ðψ ð^2 ψ Note that ▽^2 ψ = ──── + ─── + ─────. ðr^2 r ðr r^2 ðθ^2 (找不到partial的符號就用KK音標的ð代替了) (附圖就是一個圓的半徑R,r:半徑,θ:角度,就不畫了) (三) (25%) Find the solution of the PDE ▽^2 T = 0 in a finite cylinder subject to given boundary conditions as shown. ð^2 T ðT ð^2 T Note that ▽^2 T = ─── + ─── + ─── = 0. ðr^2 r ðr ðz^2 T1 —————————————— ╱╲ ╲ ∕ ﹨ ﹨ T2 ∣ ∣ ∣0 ﹨ ∕ ∕ ╲╱ ╱ —————————————— (看得出是圓柱吧...另外半徑R,圓柱長L) (四) (25%) Find the solution of the PDE ▽^2 T = 0 in a rectangular domain subject to given boundary conditions as shown. 0 ———————————————— ↑ ∣ ∣∣ ∣ ∣∣ ðT T1 ∣ ▽^2 T = 0 ∣M ── = 0 ↑y ∣∣ ðx ∣ x ∣∣ —→—————————————— ↓ ←——————L————————→ T2 Note: Tables of integrals: exp(ax) ∫exp(ax) sin(bx) dx = ───── [ a sin bx - b cos bx ] a^2 + b^2 exp(ax) ∫exp(ax) cos(bx) dx = ───── [ a cos bx - b sin bx ] a^2 + b^2 x sin 2ax ∫sin^2(ax) dx = ─ - ──── 2 4a x sin 2ax ∫cos^2(ax) dx = ─ + ──── 2 4a General solution of Bessel's differential equation: x^2 y" + xy' + (λ^2 x^2 - μ^2 ) y = 0 => y = c1Jμ(λx) + c2Yμ(λx) General solution of Modified Bessel's differential equation: x^2 y" + xy' - (λ^2 x^2 + μ^2 ) y = 0 => y = c1Iμ(λx) + c2Kμ(λx) (最後附上J0.J1.J2、I0.I1.I2.I3、Y0.Y1.Y2、K0.K1.K2.K3的圖) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.1 ※ 編輯: hellersjoke 來自: 140.112.250.1 (06/22 18:46)