精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論一 課程性質︰系定必修 課程教師︰黃漢水 教授 開課系所︰數學系 考試時間︰2006/10/16 10:20-11:20 是否需發放獎勵金:否 試題 : 一 Let α,β,γ∈S5 such that α=┌1 2 3 4 5┐ β=┌1 2 3 4 5┐ γ=(2 5 3 4) └2 3 1 5 4┘ └3 5 1 2 4┘ compute (α^(-1))γβ , βγ(β^(-1)) . (30%) 二 Let G be a group and a∈G prove that H={x∈G│a*x=x*a} is a subgroup of G. (30%) 三 Let G be a group, H be a subgroup of G and K1={aH│a∈G} K2={Ha│a∈G} Suppose that │K1│=4 and K1={a1H,a2H,a3H,a4H}, i.e. (1)for any a∈G,there is 1≦i≦4 such that aH=aiH. (2)for any 1≦i<j≦4,aiH≠ajH prove that K2={Hb1,Hb2,Hb3,Hb4} where bi=(ai)^(-1) (40%) [Hint:aH=bH←→(a^(-1))b∈H and Ha=Hb ←→b(a^(-1))∈H] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.250.55