精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論二 課程性質︰數學系大二必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰103/06/16 考試時限(分鐘):150 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (1) (15 points) Please state the first 3 parts (G1-G3) of the Fundamental Theorem of Galois Theory. (In the rest of the test G1-G5 could all be assumed.) (2) (15 points) Prove that Q(√2+√3) = Q(√2, √3). Show that [Q(√2+√3) : Q] = 4 and find the minimal polynomial of √2 + √3 over Q. 4 (3) (15 points) Determine the splitting field and its degree over Q for x + 2. (4) (15 points) Let p(x) be an irreducible polynomial over a field F of positive characteristic. Then there exists an integer k ≧ 0 and an irreducible separable polynomial p_sep(x) ε F[x] such that k p p(x) = p_sep(x). (5) (15 points) Consider the polynomial f(x) = x - 4x -1 ε Z[x]. Show that f(x) is irreducible by reducing the polynomial to F_3[x]. Please compute the Galois group of f(x) over Q and then determine its solvability by radicals. (6) (15 points) Let K be a degree n cyclic field extension over F, which n contains n-th roots of unity. Prove that K = F(√a) for some a ε F. (7) (15 points) Let K/F be a Galois extension and F'/F be any extension. Prove that KF'/F' is Galois. Define the map π:Gal(KF'/F') → Gal(K/F) by π(σ) = σ|_K . Show that π is a well-defined injective group homomorphism. (8) (15 points) Let ζ = exp(2πi/17) be the primitive 17-th rooth of unity. 2 8 9 15 Show that ζ + ζ + ζ + ζ lies in a degree 4 field extension over Q. Remark: There are 120 points totally. 註:Q代表有理數體;ε代表屬於符號;Z代表整數環;F_3代表order為3的體;σ|_K代表σ限制於K上 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.7.214 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1405138075.A.373.html ※ 編輯: acliv (140.112.7.214), 07/12/2014 12:11:15