精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論二 課程性質︰必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2014/03/13 考試時限(分鐘):30分鐘 試題 : 代數導論第二次小考 INTRODUCTION TO ALGEBRA II - QUIZ II Mar 13 2014 (1) (15 points) Prove that a Euclidean domain is a principal ideal domain(PID). (2) (15 points) Prove that if R is a PID and D is a multiplicatively closed subset of R, then (D^-1)R is also a PID. (3) (15 points) Definition: A discrete valuation v on a field Q is a function × v:Q → Z satisfying: (1) v(xy) = v(x) + v(y), (2) v is surjective, and (3) v(x+y)≧min{v(x),v(y)}. Definition: An integral domain R is called a discrete valuation ring (DVR) if there exists a discrete valuation v on its quotient field Q such that R = {x∈Q|v(x)≧0} ∪ {0}. Now Let Γ be a DVR and Φ be its quotient field. Prove that the set {x∈Φ|v(x)>0} ∪ {0} is the unique maximal ideal of Γ. (4) (15 points) Prove that a DVR is a Euclidean domain. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.40 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423641557.A.135.html ※ 編輯: Malzahar (118.166.208.40), 02/11/2015 16:18:02